Role of dendritic cells in antibody-dependent enhancement of dengue virus infection.
نویسندگان
چکیده
Dengue viruses (DV), composed of four distinct serotypes (DV1 to DV4), cause 50 to 100 million infections annually. Durable homotypic immunity follows infection but may predispose to severe subsequent heterotypic infections, a risk conferred in part by the immune response itself. Antibody-dependent enhancement (ADE), a process best described in vitro, is epidemiologically linked to complicated DV infections, especially in Southeast Asia. Here we report for the first time the ADE phenomenon in primary human dendritic cells (DC), early targets of DV infection, and human cell lines bearing Fc receptors. We show that ADE is inversely correlated with surface expression of DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin) and requires Fc gamma receptor IIa (FcgammaRIIa). Mature DC exhibited ADE, whereas immature DC, expressing higher levels of DC-SIGN and similar FcgammaRIIa levels, did not undergo ADE. ADE results in increased intracellular de novo DV protein synthesis, increased viral RNA production and release, and increased infectivity of the supernatants in mature DC. Interestingly, tumor necrosis factor alpha and interleukin-6 (IL-6), but not IL-10 and gamma interferon, were released in the presence of dengue patient sera but generally only at enhancement titers, suggesting a signaling component of ADE. FcgammaRIIa inhibition with monoclonal antibodies abrogated ADE and associated downstream consequences. DV versatility in entry routes (FcgammaRIIa or DC-SIGN) in mature DC broadens target options and suggests additional ways for DC to contribute to the pathogenesis of severe DV infection. Studying the cellular targets of DV infection and their susceptibility to ADE will aid our understanding of complex disease and contribute to the field of vaccine development.
منابع مشابه
TLR2/MyD88 pathway-dependent regulation of dendritic cells by dengue virus promotes antibody-dependent enhancement via Th2-biased immunity
Possible risk mediators in primary dengue virus (DenV) infection that favor secondary DenV infection to life-threatening dengue hemorrhagic fever (DHF) and shock syndrome (DSS) via antibody-dependent enhancement (ADE) have not yet been described. Here, DenV infection enhanced the expression of inflammatory mediators and activation molecules in dendritic cells (DCs) through TLR2/MyD88 pathway. T...
متن کاملFlow Cytometric Determination for Dengue Virus-Infected Cells: Its Application for Antibody-Dependent Enhancement Study
The theory of antibody-dependent enhancement plays an important role in the dengue virus infection. However, its molecular mechanism is not clearly studied partially due to lack of a sensitive assay to determine the dengue virus-infected cells. We developed a flow cytometric assay with anti-dengue antibody intracellular staining on dengue virus-infected cells. Both anti-E and anti-prM Abs could...
متن کاملInduction of IFNα or IL-12 depends on differentiation of THP-1 cells in dengue infections without and with antibody enhancement
BACKGROUND Appropriate induction of the early Th1 cytokine IL-12 is a critical defense directed against viral infection. We have previously shown that different viruses elicited either IL-12 or IFNα dependent Th1 reactions. Using dengue-2 virus, we sought to explore how dengue-2 induced IL-12 or IFNα expression by monocytic and its derived dendritic cells. METHODS We employed human monocytic ...
متن کاملHuman IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection.
It is known that anti-dengue virus antibodies at subneutralizing concentrations augment dengue virus infection of IgG FcR (Fc gamma R)-positive cells, and this phenomenon is called antibody-dependent enhancement. This is caused by the uptake of dengue virus-antibody complexes by Fc gamma R. We previously reported that Fc gamma RI can mediate antibody-dependent enhancement. In this study we use ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 82 8 شماره
صفحات -
تاریخ انتشار 2008